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Fernando Tuya . Maite Asensio . Néstor E. Bosch . Alvaro Garcı́a .

Alberto Navarro

Received: 29 October 2018 / Revised: 5 February 2019 / Accepted: 7 February 2019 / Published online: 12 February 2019

� Springer Nature Switzerland AG 2019

Abstract The conservation of coastal seascapes

requires a better understanding of how different

dimensions of biodiversity are represented between

juxtaposed habitats. We explored patterns of taxo-

nomic, functional, and phylogenetic diversity of fishes

between four habitats (sandy bottoms, rocky reefs of

high and low relief, and mixed bottoms) within a semi-

lagoon seascape (Las Canteras beach) in Gran Canaria

Island. Data on fish presence in each habitat were

provided by weekly snorkeling tours, at day and night,

from August 2015 to August 2018. Indices that

measured ‘how much’ biodiversity, i.e., ‘how many

species’ (species richness), ‘how much functional

dissimilarity’, and ‘how much evolutionary history’

were larger on rocky bottoms. However, indices that

measured phylogenetic differentiation, i.e., ‘how dif-

ferent’, via the taxonomic distinctiveness and the

Mean Pairwise Distance index were particularly high

on sandy bottoms, because of the presence of elasmo-

branchs, which were absent from rocky bottoms. The

‘phylogenetic signal’, whether phylogenetically

related species are functionally similar, was significant

on rocky bottoms, but non-significant on sandy

bottoms, reflecting phylogenetic ‘overdispersion’ on

sandy bottoms and phylogenetic ‘clustering’ on hard

bottoms. From a conservation perspective, sandy

bottoms cannot be underrated, particularly in the

context of maximizing indices that measure ‘how

phylogenetically different’ biodiversity is.

Keywords Fish assemblages � Elasmobranchs �
Functional diversity � Phylogenetic diversity � Trait
conservatism � NE Atlantic

Introduction

Coastal seascapes typically include a mosaic of

reticulated habitats of varying structure and complex-

ity, e.g., rocky reefs, coral reefs, seagrass meadows,

unvegetated sediments, etc. (Dorenbosch et al., 2005;

Tuya et al., 2010). The size, arrangement, and
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structure of these habitats often play a key role on the

abundance and composition of associated nearshore

assemblages (Curdia et al., 2015; Cacabelos et al.,

2016). Typically, complex habitats containing a large

number of structural elements (e.g., fronds, crevices,

drops) support a larger number of species and greater

abundances of organisms (Matias et al., 2010; Ferreiro

et al., 2014; Carvalho et al., 2017). This pattern has

been linked to increase availability of ecological

niches and colonisable surface (species-area relation-

ships), as well as increased availability of refuges

against predators (Buhl-Mortensen et al., 2012;

Kovalenko et al., 2012; Ferreiro et al., 2014). For

example, a larger species richness and abundances of

nearshore fishes is found on rocky reefs relative to

sandy bottoms across a range of scales and biogeo-

graphic areas (Jenkins & Wheatley, 1998; Guidetti,

2000; La Mesa et al., 2011; Rees et al., 2018). It is

expected that a larger number of available ecological

niches translate into a more diverse range of functional

traits. For instance, specialization in functional traits

(morphology, diet, etc.) in marine and freshwater

fishes enables niche complementarity, a key aspect in

ecosystem integrity and functioning (Mouillot et al.,

2007; Mason et al., 2008).

Understanding patterns of biodiversity through

scales of spatial and temporal variation has attracted

major interest by community ecologists (Fraschetti

et al., 2005; Meynard et al., 2011; Tuya et al., 2011).

Traditionally, ecological studies have addressed bio-

diversity from a mere and reductionist—taxonomic

perspective; for example, through the number of

species (species richness) and change (turnover) in

species composition (beta-diversity). Taxonomic

diversity (TD) indices assume that all species con-

tribute equally to ecosystem functioning, regardless of

their relatedness and role in the community functions.

Ecosystem functions, however, arise from the func-

tional traits of species rather than by their taxonomic

identity (Petchey & Gaston, 2006; Cadotte, 2011). In

fact, the term biodiversity cannot be viewed as a single

unidimensional component but rather with varying

‘dimensions’, such as functional (trait) and phyloge-

netic diversity. A multidimensional approach to

quantifying biodiversity may help to unravel the

relevance of mechanisms driving community assem-

bly (Meynard et al., 2011; Cadotte et al., 2012). In this

context, several functional (FD) and phylogenetic

(PD) diversity metrics have been developed to account

for the relatedness of species in a community based on

functional traits—attributes such as morphology,

physiology, trophic ecology, etc. that influence organ-

isms’ performance (Petchey & Gaston, 2002)—and

accumulated evolutionary history (Cadotte et al.,

2010). An important property of some of these indices

is that they are invariant of species richness, enabling

unbiased evaluations of the effects of stressors on

complementary dimensions of biodiversity (Tolimieri

& Anderson, 2010; Villéger et al., 2010; Purschke

et al., 2013).

Phylogenetically related species are expected to be

functionally comparable (Webb et al., 2002; Swenson

et al., 2007), according to the ‘niche conservatism

hypothesis’ (Harvey & Pagel, 1991). Hence, both the

phylogenetic and functional structure of an assem-

blage are often considered as surrogates of each other.

However, this assumption, so-called as the ‘phyloge-

netic signal’, warrants further investigation and types

of assemblages as a result of inconsistent results

(Munkemuller et al., 2015; Tanaka & Sato, 2015).

Connections between different dimensions of biodi-

versity are sometimes unexpected and system-specific

(Perronne et al., 2014); this is particularly the case

between taxonomic, functional, and phylogenetic

diversity patterns of reef fishes at both global

(Stuart-Smith et al., 2013) and local scales (Villéger

et al., 2010; Bosch et al., 2017; Tuya et al., 2017).

Within this framework, combining TD, FD, and PD is

very valuable to test predictions on the balance

between processes governing community assembly,

e.g., competition versus. environmental filtering.

Communities under strong environmental filtering

tend to show ‘phylogenetic clustering’, i.e., species

belong to the same evolutionary lineages. In contrast

communities under strong competition show ‘phylo-

genetic overdispersion’. Notably, however, the spatial

scale can alter this rule (Gomez et al., 2010; Arnan

et al., 2016; Xu et al., 2017).

Since it is challenging to preserve biodiversity due

to limited conservation budgets, it remains critical to

understand how diversity dimensions are related. In

this study, we explored patterns of taxonomic, func-

tional, and phylogenetic diversity of nearshore fishes

across four juxtaposed habitats (sandy, mixed, high

relief rocky bottoms, and low relief rocky bottoms)

interspersed within a shallow-water seascape of a sub-

tropical island. We initially partitioned rocky bottoms

between high and low relief because they provide
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different niches, for example, in terms of available

refuges (Tuya et al., 2011). We firstly hypothesized

that fish biodiversity, in terms of ‘how much’

taxonomic, functional and phylogenetic diversity,

would differ between the four habitats. In particular,

we expected a larger diversity on rocky reefs relative

to sandy bottoms. Secondly, we hypothesized that

strong correlations between FD and PD should lead to

‘phylogenetic signal’ between habitat types. We

finally hypothesized that varying patterns of phyloge-

netic differentiation should affect the balance between

phylogenetic ‘overdispersion’ and ‘clustering’ of

lineages between habitats.

Materials and methods

Study site

This study was carried out at Las Canteras beach, a

nearshore semi-lagoon system located at the city of

Las Palmas de Gran Canaria, in the northern side of

Gran Canaria Island (north-eastern Atlantic), a sub-

tropical island of volcanic origin (Fig. 1a). Sandy

bottoms and rocky reefs of varying structural com-

plexity are found interspersed as irregular mosaics,

typically between zero and four m depth (Supplemen-

tary Fig. 1). An offshore sedimentary bar (ca. 1.6 km

long) delimitate the system seaward (Fig. 1b, Supple-

mentary Fig. 1, 0.42 km2). At low tide, the bar is

majorly above the surface, providing protection

against oceanographic forces (e.g., waves and cur-

rents), and so delimitating a clear semi-lagoon system.

At high tide, however, the system is open to offshore

waters. For the purpose of this study, four habitat types

were defined (Fig. 2): sandy bottoms with no vegeta-

tion, low relief rocky bottoms (rocky flat platforms and

large boulders covered by photophilous vegetation),

high relief rocky bottoms (rocky areas of abrupt

topography, including caves, overhangs, and cre-

vices), and mixed bottoms, encompassing sandy-

rocky transitions. Delimitation of habitats was quite

straightforward in situ. Rocky bottoms, either of low

or high relief, are[ 25 m away from adjacent sandy

bottoms. The study site is protected within the

framework of a ‘Special Area of Conservation’ (code

ES7010037), under the EU ‘Natura 2000’. Recre-

ational and commercial fishing is banned within the

system.

Data collection

Data on fish presence in each habitat were provided by

tours carried out by the ecotourism enterprise Snorke-

ling Experience (www.snorkelingexperince.com)

from August 2015 to August 2018, including all sea-

sons throughout each year (Supplementary Fig. 2).

Normally, 2–3 tours, both at day and night, are per-

formed per week, except in seasons of rough seas. On

each tour, the four habitats are visited, as part of a

standard underwater path (Supplementary Fig. 3).

Group snorkeling guides (authors: F.T, M.A, and

A.N.) annotated fish species observed on each habitat.

Typically, each tour passed through each type of

habitat several times, as these habitats are connected at

Fig. 1 Location of (a) the study site (Las Canteras beach) at

Gran Canaria Island (eastern Atlantic), including (b) an aerial

view of the semi-lagoon system
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small scales (Supplementary Fig. 1). The snorkeling

tracks start and end at different points of the beach.

During this period, a total of 308 tours (229 at daytime

and 79 at night-time, for a total of ca. 500 h of

underwater observation) were carried out. Seawater

visibility typically ranged between 8 and 25 m. Night-

time excursions facilitated the identification of species

of nocturnal habits with the help of underwater tor-

ches. At the same time, we compiled information from

free-diving underwater photography competitions

carried out at the study site (www.fotosublaspalmasgc.

com) on 2015, 2016 and 2017, which cover the four

considered habitats. In particular, this provided com-

plementary information for very cryptic species (e.g.,

small-sized blennies and gobies). In both cases, taxo-

nomic identification of fishes was based on previous

fish checklists from Gran Canaria Island (Tuya et al.,

2004; Bosch et al., 2017) and the Canary Islands (Brito

et al., 2002). A presence-absence matrix was then

assembled and taxonomically validated via the World

Register of Marine Species (WoRMS) ‘match taxa’

tool (www.marinespecies.org) (Table 1). The conser-

vation status of each species, according to the IUCN

Red List of Threatened Species (www.iucnredlist.

org), was also considered.

Biodiversity patterns

The R-package EcoIndR (Guisande, 2017) was used to

calculate a range of diversity indices from presence-

absence data for each habitat (Table 1), including:

species richness (an index of TD), the Rao and the

functional evenness indices (indices of FD) and the

taxonomic distinctiveness, a proxy of PD. To assess

FD, a fish-traits matrix was initially assembled

following the classification of Bosch et al. (2017) for

the study region. Six functional traits, representing key

aspects of the ecological performance of fish species in

terms of habitat and resource use, were considered:

trophic (niche) level, trophic breadth, trophic group

(detritivorous, planktivorous, herbivorous, omnivo-

rous, micro-invertebrate feeder, macro-invertebrate

Fig. 2 Habitat types within the coastal seascape at the study site (Las Canteras beach), including a sandy bottoms, b mixed bottoms,

c low relief rocky bottoms and d high relief rocky bottoms
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Table 1 Presence of fish species on each habitat type within the study site

Species Authority Sandy

bottoms

Mixed

bottoms

HR rocky

bottoms

LR rocky

bottoms

E = Myliobatis aquila (DD) (Linnaeus, 1758) 1 1 0 0

E = Dasyatis pastinaca (DD) (Linnaeus, 1758) 1 1 0 0

E = Taeniura grabata (DD) (Geoffroy Saint-Hilaire, 1817) 1 1 1 1

E = Gymnura altavela (VU) (Linnaeus, 1758) 1 1 0 0

E = Aetomylaeus bovinus

(DD)

(Geoffroy Saint-Hilaire, 1817) 1 1 1 1

E = Squatina squatina (CE) (Linnaeus, 1758) 1 1 0 0

E = Torpedo marmorata (DD) Risso, 1810 1 0 0 0

E = Mustelus mustelus (VU) (Linnaeus, 1758) 1 1 1 1

Sphyraena viridensis (LC) Cuvier, 1829 0 1 1 1

Belone belone (LC) (Linnaeus, 1760) 0 1 1 1

Atherina presbyter (LC) Cuvier, 1829 0 1 1 1

Engraulis encrasicolus (LC) (Linnaeus, 1758) 0 1 1 1

Boops boops (LC) (Linnaeus, 1758) 0 1 1 1

Sardinella maderensis (VU) (Lowe, 1838) 0 1 1 1

Trachinotus ovatus (LC) (Linnaeus, 1758) 0 1 1 1

Pomatomus saltatrix (VU) (Linnaeus, 1766) 0 1 1 1

Pseudocaranx dentex (LC) (Bloch & Schneider, 1801) 0 1 1 1

Seriola rivoliana (LC) Valenciennes, 1833 0 0 1 1

Chelon auratus (LC) (Risso, 1810) 1 1 1 1

Chelon labrosus (LC) (Risso, 1827) 1 1 1 1

Dicentrarchus labrax (LC) (Linnaeus, 1758) 0 1 1 1

Dicentrarchus punctatus (LC) (Bloch, 1792) 0 1 1 1

Pagrus auriga (LC) Valenciennes, 1843 0 1 0 1

Lithognathus mormyrus (LC) (Linnaeus, 1758) 0 1 1 1

Pagellus erythrinus (LC) (Linnaeus, 1758) 1 1 0 0

Diplodus puntazzo (LC) (Walbaum, 1792) 0 0 1 1

Diplodus sargus (LC) (Linnaeus, 1758) 0 1 1 1

Diplodus vulgaris (LC) (Geoffroy Saint-Hilaire, 1817) 0 1 1 1

Diplodus cervinus (LC) (Lowe, 1838) 0 1 1 1

Diplodus annularis (LC) (Linnaeus, 1758) 0 1 1 1

Sparus aurata (LC) Linnaeus, 1758 0 1 1 1

Oblada melanura (LC) (Linnaeus, 1758) 0 1 1 1

Sarpa salpa (LC) (Linnaeus, 1758) 0 1 1 1

Pomadasys incisus (LC) (Bowdich, 1825) 0 1 1 1

Parapristipoma octolineatum

(LC)

(Valenciennes, 1833) 0 0 1 0

Spondyliosoma cantharus

(LC)

(Linnaeus, 1758) 0 1 1 1

Kyphosus sectatrix (LC) (Linnaeus, 1758) 0 0 1 1

Sciaena umbra (NT) Linnaeus, 1758 0 0 1 1

Mycteroperca fusca (EN) (Lowe, 1838) 0 0 1 1

Epinephelus marginatus (EN) (Lowe, 1834) 0 0 1 0

Serranus scriba (LC) (Linnaeus, 1758) 0 1 1 1
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Table 1 continued

Species Authority Sandy

bottoms

Mixed

bottoms

HR rocky

bottoms

LR rocky

bottoms

Sparisoma cretense (LC) (Linnaeus, 1758) 0 1 1 1

Symphodus trutta (LC) (Lowe, 1834) 0 0 1 1

Coris julis (LC) (Linnaeus, 1758) 0 0 1 1

Thalassoma pavo (LC) (Linnaeus, 1758) 0 1 1 1

Xyrichtys novacula (LC) (Linnaeus, 1758) 1 1 0 0

Labrisomus nuchipinnis (LC) (Quoy & Gaimard, 1824) 0 0 1 1

Mullus surmuletus (LC) Linnaeus, 1758 1 1 0 1

Trachinus draco (LC) Linnaeus, 1758 1 1 0 0

Synodus synodus (LC) (Linnaeus, 1758) 1 1 0 1

Synodus saurus (LC) (Linnaeus, 1758) 1 1 0 1

Scorpaena porcus (LC) Linnaeus, 1758 0 1 1 1

Scorpaena maderensis (LC) Valenciennes, 1833 0 0 1 1

Balistes capriscus (LC) Gmelin, 1789 0 1 1 1

Stephanolepis hispidus (LC) (Linnaeus, 1766) 0 1 1 1

Abudefduf luridus (LC) (Cuvier, 1830) 0 1 1 1

Abudefduf saxatilis (LC) (Linnaeus, 1758) 0 0 1 1

Chromis limbata (LC) (Valenciennes, 1833) 0 0 1 0

Apogon imberbis (LC) (Linnaeus, 1758) 0 1 1 1

Tripterygion delaisi (LC) Cadenat & Blache, 1970 0 0 1 1

Ophioblennius atlanticus (LC) (Valenciennes, 1836) 0 0 1 1

Parablennius parvicornis

(LC)

(Valenciennes, 1836) 0 0 1 1

Parablennius pilicornis (LC) (Cuvier, 1829) 0 0 1 1

Parablennius incognitus (LC) (Bath, 1968) 0 0 1 1

Parablennius goorensis (LC) (Valenciennes, 1836) 0 0 1 1

Coryphoblennius galerita

(LC)

(Linnaeus, 1758) 0 0 1 1

Scartella cristata (LC) (Linnaeus, 1758) 0 0 1 1

Lipophrys pholis (LC) (Linnaeus, 1758) 0 0 1 1

Lipophrys trigloides (LC) (Valenciennes, 1836) 0 0 1 1

Gobius paganellus (LC) Linnaeus, 1758 0 1 1 1

Gobius niger (LC) Linnaeus, 1758 0 1 0 0

Mauligobius maderensis (LC) (Valenciennes, 1837) 0 1 1 1

Vanneaugobius canariensis

(LC)

Van Tassell, Miller & Brito,

1988

0 1 1 1

Gnatholepis thompsoni (LC) Jordan, 1904 0 1 1 1

Lepadogaster lepadogaster

(LC)

(Bonnaterre, 1788) 0 0 1 1

Opeatogenys cadenati (DD) Briggs, 1957 0 0 0 1

Canthigaster capistrata (LC) (Lowe, 1839) 0 1 1 1

Sphoeroides marmoratus (LC) (Lowe, 1838) 0 1 1 1

Microchirus azevia (DD) (de Brito Capello, 1867) 1 1 0 0

Bothus podas (LC) (Delaroche, 1809) 1 1 0 0

Myrichthys pardalis (LC) (Valenciennes, 1839) 0 1 1 1

Gymnothorax unicolor (LC) (Delaroche, 1809) 0 0 1 0
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feeder and piscivorous, piscivorous), maximum body

length, body shape (elongated, fusiform, depressed,

compressed, and eel-like), and water-column position

(benthic, benthopelagic, pelagic non-site attached).

Most values and attributes were obtained from Fish-

base (www.fishbase.org), but also from existing liter-

ature. When information on particular species was not

available, we then used values from sibling species,

often within the same genus and geographic area. In

addition to the Rao index of FD (Villéger et al., 2008),

we calculated an index of functional evenness, a

measure of the spread of species across the range of

functional trait values present in a community—the

so-called ‘functional space’ (Villéger et al., 2008). The

taxonomic distinctiveness estimates the taxonomic

extent of a sample from a presence-absence checklist.

The taxonomic distance between each pair of species

is considered through a classification tree based on the

classical Linnean taxonomy. Then, the average taxo-

nomic distinctness (D ?) is calculated, as the mean of

all pairwise distances throughout the tree (Clarke &

Warwick, 2001).

A phylogenetic tree for all recorded species (Sup-

plementary Fig. 4) was constructed, using the PhyloT

online platform (www.phylot.biobyte.de), which is

based on the NCBI taxonomy (www.ncbi.nlm.nih.

gov/guide/taxonomy). The NCBI taxonomy classifies

organisms from public sequence databases. For seven

species: Apterichtus caecus (Linnaeus, 1758), Myr-

ichthys pardalis (Valenciennes, 1839), Sphoeroides

marmoratus (Lowe, 1838), Canthigaster capistrata

(Lowe, 1839), Symphodus trutta (Lowe, 1834),

Parablennius goorensis (Valenciennes, 1836), and

Opeatogenys cadenati Briggs, 1957, there was no

public sequences; their phylogenetic relatedness was

considered from sibling species instead. A nexus file

containing the topology of the phylogenetic tree was

provided and then converted to a ‘phylo’ object, and

subsequently visualized, using the ‘ape’ R-package

(Paradis & Schliep, 2018). By using the ‘picante’

R-package (Kembel et al. 2010), we calculated the

Faith’s index of PD, which is defined as the total

branch length spanned by the tree including all species

in a local community, here each habitat. In addition,

we calculated the Mean Pairwise Distance (MPD)

index between all species in each community (here,

habitat). These two indices reflect the ‘richness’ and

‘divergence’ of a phylogenetic tree respectively; ‘how

much’ evolutionary diversity and ‘how different’ is

their evolutionary history, respectively (Tucker et al.,

2017). Measures of the ‘standardized effect size’ of the

phylogenetic community structure were calculated,

for each habitat, by comparing the observed phylo-

genetic relatedness, via the MPD, to patterns of ran-

dom (null) communities. Standardized effect sizes

estimate the divergence between phylogenetic dis-

tances in the observed versus null communities,

through 999 randomizations, divided by the standard

deviation of phylogenetic distances in the null data

(Webb et al., 2002). Such calculations allow to infer

Table 1 continued

Species Authority Sandy

bottoms

Mixed

bottoms

HR rocky

bottoms

LR rocky

bottoms

Muraena augusti (LC) (Kaup, 1856) 0 0 1 0

Muraena helena (LC) Linnaeus, 1758 0 0 1 0

Ariosoma balearicum (LC) (Delaroche, 1809) 1 1 0 0

Apterichtus caecus (LC) (Linnaeus, 1758) 1 1 0 0

Facciolella oxyrhyncha (LC) (Bellotti, 1883) 1 1 0 0

Syngnathus typhle (LC) Linnaeus, 1758 0 0 0 1

Hippocampus hippocampus

(DD)

(Linnaeus, 1758) 0 0 0 1

The status of each species, according to the IUCN Red List of Threatened Species, is included

DD data deficient, LC least concern, NT near threat, VU vulnerable, EN endangered, CR critically endangered. Elasmobranchs are

denoted with an ‘E’
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patterns of community assembly (Xu et al., 2017). The

‘picante’ R-package provides functions in this regard.

We obtained a correlation matrix between each pair of

biodiversity indices in R 3.5.1 to address connections

between the different biodiversity dimensions (Sup-

plementary Table 1).

A matrix of pairwise phylogenetic distances, using

tree branch lengths, was obtained from the phyloge-

netic topology of each habitat (Supplementary Fig. 5).

A mantel test, via Pearson correlation, then tested for

the significance, through 999 permutations, of corre-

lations between the matrices of phylogenetic distances

for each habitat and their corresponding matrices of

dissimilarities according to functional traits. This

procedure, which was implemented using the ‘vegan’

R-package (Oksanen et al., 2018), allowed to infer

variation in the intensity of the ‘phylogenetic signal’

between habitats; the longer the correlation, the

stronger the ‘phylogenetic signal’.

Patterns in taxonomic beta-diversity were assessed

by testing for compositional differences between

habitats through Jaccard dissimilarities; the ‘vegan’

R-package (Oksanen et al., 2018) was used in this

regard. We also evaluated patterns in phylogenetic

beta-diversity, i.e., patterns of phylogenetic related-

ness, between communities using the ‘picante’

R-package (Kembel et al., 2010).

Results

A total of 89 fish species (8 elasmobranchs and 81

teleosts) were recorded from the study site (Table 1).

A larger number of fish species were observed from

rocky bottoms of both low (69) and high relief (68),

relative to mixed (58) and sandy (21) bottoms

(Fig. 3a). These differences in TD, however, were

minor in terms of FD (through the Rao index), as FD

slightly peaked in rocky bottoms, of low and high

relief, relative to both mixed and sandy bottoms

(Fig. 3b). In fact, despite sand communities encom-

passed a narrow range of functional traits compared to

rocky and mixed bottoms, species were evenly spread

across the functional trait space, resulting in a larger

functional evenness value (Fig. 3c).

Despite low fish species richness on sandy bottoms,

the taxonomic distinctiveness of fish assemblages was

particularly high in this habitat (Fig. 4a). This result

reflects the major presence of elasmobranchs in sandy

and mixed bottoms relative to rocky bottoms, where

several elasmobranchs were absent (Table 1). In any

case, sandy bottoms harbored a small part of the total

evolutionary history of the phylogenetic tree, as the

Faith’s index of PD was particularly low in sandy

bottoms relative to the other habitats (Fig. 4b).

However, species inhabiting sandy bottoms were

phylogenetically distinct, as the MPD (Fig. 4c) was

larger in sandy bottoms relative to the other habitats.

This phylogenetic ‘overdispersion’ (or evenness) of

fishes inhabiting sandy bottoms was, in turn, demon-

strated according to measures of the ‘standardized

effect size’ of phylogenetic community structure,

when patterns of the MPD were compared to patterns

of null models of phylogeny (random communities,

Table 2). On sandy bottoms, positive ‘standardized

effect size’ (MPD.obs.z[ 0) and high quantiles

(MPD.obs.p[ 0.95) provided evidence of phyloge-

netic ‘overdispersion’ or, at least, a greater phyloge-

netic distance between occurring species than

expected by chance (Table 2). On the contrary, the

negative ‘standardized effect size’ (MPD.obs.z\ 0)

found on rocky habitats and the low quantiles

(MPD.obs.p\ 0.05) are clearly suggesting phyloge-

netic ‘clustering’ of lineages, or reduced phylogenetic

distances between species, on rocky bottoms

(Table 2). The degree of ‘phylogenetic signal’ was

particularly accentuated on rocky bottoms (Pearson

rs = 0.519 and 0.517, P = 0.01, for high and low relief

reefs, respectively) and mixed bottoms (Pearson

rs = 0.502, P = 0.01) relative to sandy bottoms (Pear-

son rs = 0.055,P = 0.34). In other words, there was no

relationship between the functional and phylogenetic

structure of the fish community on sandy bottoms.

Finally, analysis of beta-diversity revealed a clear

turnover of species between habitats (Fig. 5a), while

turnover of phylogenies was less accentuated

(Fig. 5b). High and low relief rocky bottoms shared

the highest number of species and phylogenetic

history, and there was also high similarity between

these habitats and mixed bottoms. On the other hand,

sandy bottoms supported distinct communities both

based on species composition and phylogenetic

history.
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Discussion

This study has demonstrated that patterns of fish

diversity between adjoining habitats within a coastal

seascape are considerably influenced by the way

diversity is defined and, therefore, mathematically

calculated. Initially, our study revealed a certain

degree of consistency between indices that measured

‘how much’ biodiversity; indices that measured ‘how

many species’ (species richness, TD), ‘how much

functional diversity’ (Rao index, FD) and ‘how much

phylogenetic history’ (Faith’s PD) showed a similar

pattern. However, indices that measured ‘how differ-

ent’ fish communities are, taxonomically and phylo-

genetically, showed an opposing pattern; the

taxonomic distinctiveness and the MPD of fishes

was particularly large for the fish community of lower

TD, here sandy bottoms. Typically, different habitats

offer different resources (e.g., food or shelter) and the

use of these habitats may be part of species’ life cycle

Fig. 3 Diversity of fish

species on each habitat,

according to the a total

number of species (species

richness, TD), b the Rao

index of FD and c the
evenness index of FD. The

total number of species was

partitioned according to the

IUCN conservation

categories: ‘least concern’,

‘data deficient’ and

‘protected’ species, which

included vulnerable,

endangered, and critically

endangered species
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Fig. 4 Diversity of fish

species on each habitat,

according to the a the

taxonomic distinctness of

PD, b Faith’s PD and c the
mean phylogenetic distance

(MPD) index

Table 2 Mean phylogenetic distance (MPD) of fish species on

each habitat and those from null (random) communities to test

for patterns of community assembly; MPD.rand.mean: mean

MPD in null communities; MPD.rand.sd: standard deviation of

MPD in null communities; MPD.obs.rank: rank of observed

MPD vs. null communities; MPD.obs.z: standardized effect

size of MPD versus null communities; MPD.obs.p: P value

(quantile) of observed MPD versus null communities

Habitat MPD MPD.rand.mean MPD.rand.sd MPD.obs.rank MPD.obs.z MPD.obs.p

Sandy 1.5735 1.4536 0.0796 952 1.5054 0.952

Mixed 1.4683 1.4525 0.0317 667 0.5004 0.667

HR rocky 1.3505 1.4523 0.0241 1 - 4.2272 0.001

LR rocky 1.3509 1.4519 0.0237 1 - 4.2704 0.001
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or be associated to a particular life history stage (e.g.,

nourishment vs. reproductive areas). This is particu-

larly common for nearshore fishes, where ontogenetic

habitat shifts have been widely documented (Espino

et al., 2015; Costa Azevedo et al., 2017). This seems to

be plausible at the study system, because can easily

move between adjoining habitats connected at small

scales. At the same time, adaptation of fish species to

the peculiarities of the spatial architecture/configura-

tion of each habitat may concurrently affect functional

traits, e.g., variations in morphology and position in

the water column for fishes (Farré et al., 2015). In

species-rich ecosystems, high structural complexity

increase niche availability, reducing competition and

predation (Almany, 2004; Richardson et al., 2017).

This allows phylogenetically related fish species to

locally coexist, playing a key role in the evolution of

traits within lineages (Bellwood et al., 2014a, b;

Floeter et al., 2018).

Fig. 5 Beta-diversity of

fish species, according

a dissimilarities in species

composition and

b phylogenetic relatedness,

between habitats
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As expected, our study initially detected a larger

number of species (richness) and a different compo-

sition of nearshore fishes on rocky reefs (of both high

and low relief) relative to sandy bottoms (Jenkins &

Wheatley, 1998; Guidetti, 2000; La Mesa et al., 2011;

Rees et al., 2018). The positive correlation between

measures of TD (here, species richness) and measures

of functional differentiation (here, Rao index of FD)

(Supplementary Table 1) supports previous expecta-

tions that the presence of more species promote a

larger representation of functional traits just ‘by

chance’ (Schleuter et al., 2010). However, this pattern

might be reversed in situations where harsh environ-

mental conditions promote the coexistence of species

that are functionally similar, independently of changes

in species richness (Villéger et al., 2010; Purschke

et al., 2013). In this study, the sandy bottom fish

community encompassed a narrow range of functional

traits compared to rocky and mixed bottoms, as a

result of the predominance of species with depressed

bodies and carnivorous diets. For example, most

elasmobranchs, as well as other representative species

of sandy bottoms, e.g., Bothus podas (Delaroche,

1809), Microchirus azevia (de Brito Capello, 1867)

shared these traits, which are majorly absent in species

inhabiting rocky bottoms. For example, the nine

species with depressed bodies only occurred on sandy

and mixed bottoms. Here, species are more evenly

distributed (higher functional evenness) across the

functional space (i.e., across the range of functional

traits), suggesting a better utilization of the niche

space (Mason et al., 2005).

We recorded a low number of fish species on sandy

bottoms relative to the other habitats, as registered

elsewhere (Jenkins &Wheatley, 1998; Guidetti, 2000;

La Mesa et al., 2011; Rees et al., 2018). However, we

observed an unexpected high diversity of fish species

on sandy bottoms according to their taxonomic

distinctiveness (see also Supplementary Table 1).

Indices of taxonomic distinctness quantify diversity

as a measure of the taxonomic relatedness of species

within a sample (here, a habitat), based on the

distances between species in a classification tree, i.e.,

the Linnean classification (Clarke & Warwick, 2001),

which is a simple approximation to a full phylogeny. A

relevant number of fish inhabitants of sandy andmixed

bottoms were elasmobranchs, which were otherwise

majorly absent from rocky bottoms. As the Linnean

classification is only based in 5 taxonomic nodes

(species, genus, family, order, and class), and the high-

order level is the ‘class’, the large presence of

elasmobranchs in sandy and mixed bottoms notably

conditioned the outcomes of the taxonomic distinct-

ness. The importance of elasmobranchs driving pat-

terns in taxonomic distinctiveness has also been found

in other ecological systems (Rogers et al., 1999;

Tolimieri & Anderson, 2010); this has been linked to

the clustering of specialist species in habitats under

severe environmental conditions, such as the deep

ocean (Zinten et al., 2011). Other studies have also

shown that communities with low species richness do

not necessarily have a smaller taxonomic distinctive-

ness relative to communities with many species

(Ellingsen et al., 2005), whereas species richness and

taxonomic distinctness of fishes may otherwise behave

in the same way (Bosch et al., 2017).

The use of phylogenies in modern ecology and

conservation is becoming increasingly common (Win-

ter et al., 2013), enlarging our understanding of

biological diversity and ecosystem functions (Webb

et al., 2002; Tucker et al., 2017). Our study revealed

contrasting outcomes, according to the way phyloge-

netic diversity is perceived and measured. In partic-

ular, sandy bottoms accumulated a reduced amount of

the total fish evolutionary history of the study

seascape, here demonstrated by a low Faith’s index

of PD. However, species inhabiting sandy bottoms

were considerably dissimilar from a phylogenetic

point of view, as revealed by a high MPD. In turn, our

study demonstrated ‘phylogenetic overdispersion’

(= evenness) of fishes in sandy bottoms, relative to

rocky bottoms, where ‘phylogenetic clustering’ of

species tend to occur. Most likely, the high structural

complexity of reefs results in increased niche avail-

ability, reducing competition, and so favoring the

coexistence (‘clustering’) of phylogenetically similar

species sharing similar traits. On the contrary, we

detected a lack of ‘phylogenetic signal’ on sandy

bottoms. In other words, on sandy bottoms, phyloge-

netically dissimilar species can have similar traits and/

or phylogenetically similar species can have very

dissimilar traits. For example, two phylogenetically

dissimilar inhabitants of sandy bottoms, the Angel

shark Squatina squatina (Linnaeus, 1758), and the

wide-eyed flounder Bothus podas, have both

depressed bodies and are located in the same position

in the column (benthic); both species tend to somehow

be functionally similar, despite their large
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phylogenetic differentiation. On the contrary, two

phylogenetically similar inhabitants of sandy bottoms,

here two elasmobranchs, the smooth-hound Mustelus

mustelus (Linnaeus, 1758) and the common stingray

Dasyatis pastinaca (Linnaeus, 1758) hardly share

similar traits. Mustelus mustelus has an elongated

body with a benthopelagic position in the water

column, whereas D. pastinaca has a depressed body

and occurs on the benthos. On sandy bottoms,

evolutionary adaptation of species to a bidimensional

habitat seems to promote functional convergence, at

least of certain traits, of phylogenetically different

species (MacArthur & Levins, 1967). The absence of

phylogenetically related species that share common

traits on sandy bottoms has likely arisen as a result of

intense competition (for food) between species in this

relatively homogenous and resource-poor habitat

(Farré et al., 2015). Typically, resource shortage

produce higher interspecific competition, resulting in

phylogenetic overdispersion, which is common from

harsh habitats (e.g., deep reefs), where the availability

of resources is limited, so species must specialize to

maximize their fitness (Gomez et al., 2010). ‘Envi-

ronmental filtering’ tend to decrease functional and

phylogenetic distances between species (‘PD or FD

clustering’) for a given level of TD, whereas compe-

tition tend to otherwise increase these distances (‘PD

or FD overdispersion’) (Webb et al., 2002; Kraft et al.,

2007).

Conservation implications

Typically, preserving biodiversity via protection of

species richness has been an explicit aim of manage-

ment and conservation policies. The functional and

phylogenetic associations between species, however,

have been gradually incorporated to grasp a more

holistic understanding of biodiversity, particularly in

the context of thoughtful functional or evolutionary

lineages (Winter et al., 2013; Grenié, 2018). Indices of

FD and PD are attractive because, firstly, they may be

based on presence/absence data, as our case-study, and

are unaffected by the sampling effort. In this study, for

example, elasmobranchs, which majorly inhabit sandy

and mixed bottoms of the study seascape, largely

contributed to the functional and phylogenetic dis-

tinctiveness of fishes between habitats. This was

particularly highlighted by PD indices that measured

‘how different’ biodiversity was, rather than by

indices that estimated ‘how much’ biodiversity.

Importantly, over and above topological (and mathe-

matical) connotations linked with the calculations of

biodiversity indices, most elasmobranchs are included

in different categories of concern according to the

IUCNRed List (3 out of 8 species, while the remaining

five species are ‘Data Deficient’, Table 1). Certain

areas of the world are rich in terms of the diversity of

elasmobranchs with a high frequency of observations

along nearshore waters. The Canary Islands are a clear

example; large aggregations of elasmobranchs are

spotted near the shore (Narváez, 2013), even linked to

human facilities (Tuya et al., 2006).

When working with pooled compositional (pres-

ence-absence) data, lack of replication at the habitat-

scale avoids proper statistical inferences. Despite this

limitation, our results support the idea that sandy

bottoms cannot be initially underrated in terms of

conservation. In summary, data from this study

indicate that protection of coastal habitats is greatly

benefited when a range of habitats are included to

maximize biodiversity indices that assess both ‘how

much’ and ‘how different’ biodiversity varies across

habitats. This seems to be particularly pertinent when

depressed-body elasmobranchs are a key conservation

element.
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